

Case Study in Integrated Mooring & Cable Design and Its Importance to Feasibility of Floating Wind Farm Design in Shallow Water

Liam Moore February 2024

Agenda

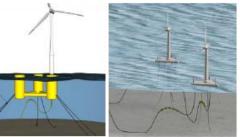
- About 2H
- Introduction
- Inter Array Power Cable Design Requirements
- Cable Configuration Development Analysis Workflow
- Case Study
- Conclusions

About 2H Offshore

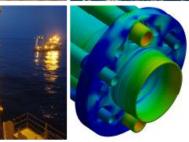
Founded in 1993	300+ highly	Leader in marine	Renewable and	Independent
	qualified	structure	decarbonization	technology driven
	engineers	dynamics	expertise	company
Practical understanding of hardware and installation	Extensive experience in all riser types	International coverage	Seamless operations & procedures worldwide	Multi-disciplines

2/1

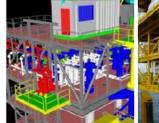
Principal Technical Offerings



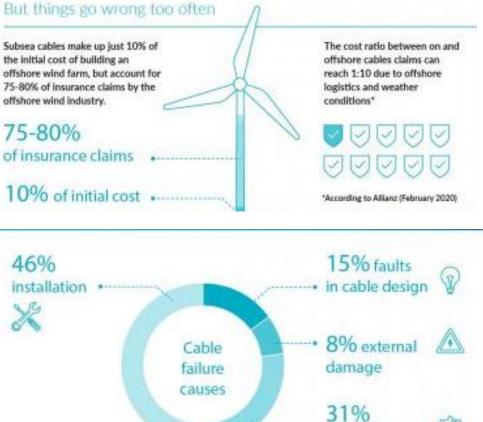
Floating Wind



Risers and Pipelines



Fixed Platform

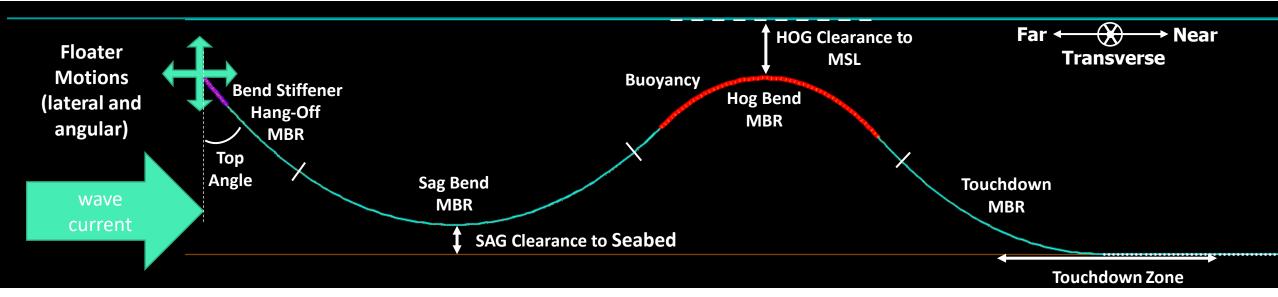


References:

[1] LLOYD Warwick International Offshore Wind Loss Adjusters Perspective, 28 April 2021, ORE Catapult
 [2] https://ore.catapult.org.uk/stories/electrode/

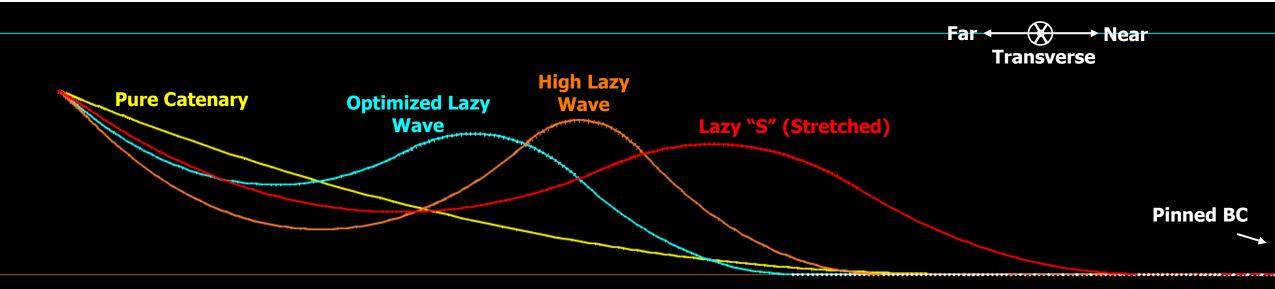
Introduction Background

- 80% of Offshore Wind financial losses and insurance claims are attributed to power cable failures¹
- Root cause: installation damage, manufacturing defects, inadequate design and external damage
- Most of these cables are static! Dynamic cables present a greater challenge.
- This presentation focus on integrated mooring & dynamic HV cable configuration development for shallow water floating wind



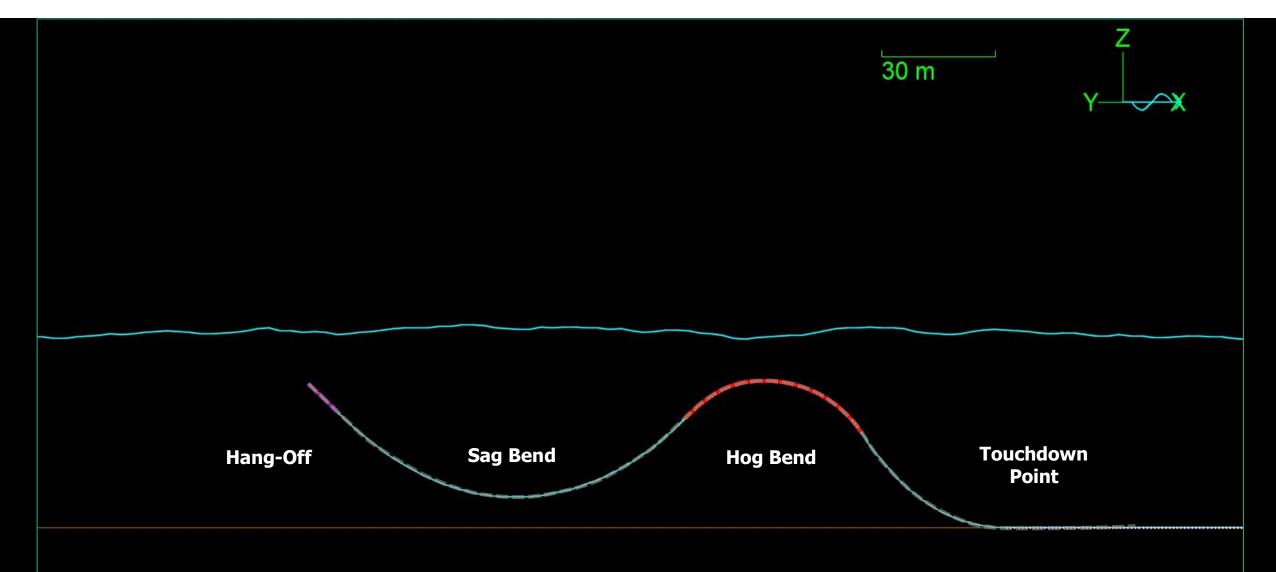
manufactu

Power Cable Design for Shallow Water Design Requirements and Parameters


- Power cable must accommodate harsh conditions:
 - Large Floater lateral motions (~30% WD)
 - Floater dynamic rotations (~8-12deg)
 - High Wave Heights (~25m Hmax)
 - High currents (> 1.0m/s)
 - Marine Growth variation over life

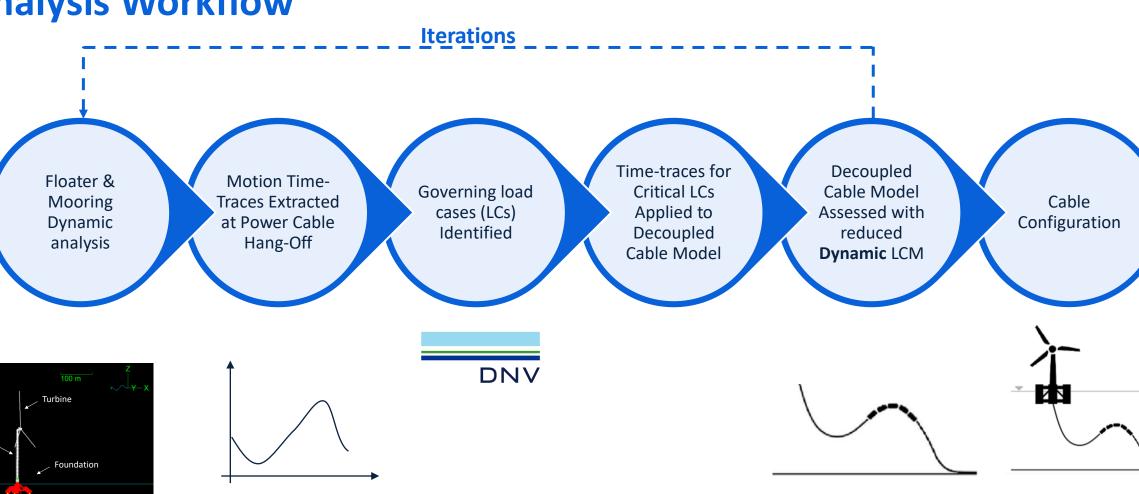
- Must still meet design requirements:
 - Structural limits respected e.g. minimum bend radius (MBR), maximum tension, compression
 - Sag bend not to impact seabed
 - Hog bend to maintain sufficient clearance for vessel access
 - Minimizing compression
 - Minimizing seabed movement at touch down point
 - No clashing with adjacent structures (e.g. floater and mooring lines) ⁶

Power Cable Design for Shallow Water (<100m) Configuration Development



- Many configurations to be considered to establish optimum design envelope
- Pure catenary configuration not feasible exceeds MBR at TDP, high compression, high tension
- The distribution of buoyancy modules controls the shape of the lazy wave configuration (length, spacing, distance from hang-off)
- High lazy wave (high arch, low sag) gives good compliance and smaller footprint but can compromise MBR (particularly in **near** conditions)
- Lazy "S" (stretched) gives good response with near conditions, but can compromise tension (in far configuration) and has larger footprint
- Final Optimised Configuration is selected based on based on a wide range of variation of top angle, section lengths and buoyancy modules as a compromise between competing parameters

Power Cable Design for Shallow Water Dynamic Behaviour – 50year Storm



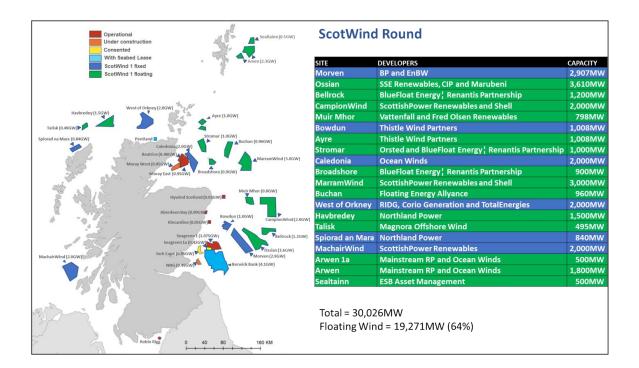
Cable Configuration Development Analysis Workflow

Tower

Mooring Lines

- >> Cable design as part of a system
- >> Iteration potentially inefficient as cable and mooring assessment decoupled

SUBSEA 2



Case Study ScotWind Wind Farm

Case Study Description

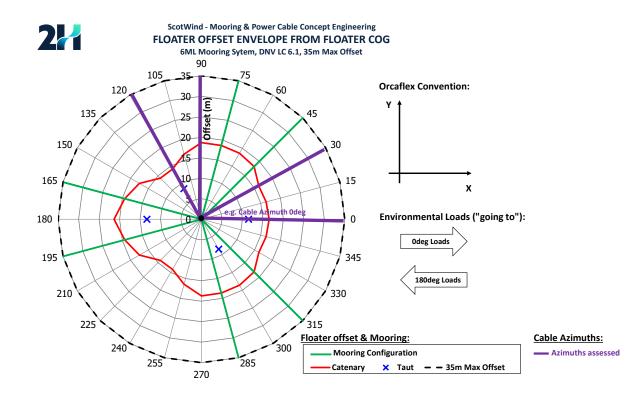
- 20MW Semi-submersible Floater
- Metocean (typical North Sea)
- 6-line **Catenary** Mooring System (3x2)
 - Comparison with 6-line Taut Mooring System (3x2)
- Water Depth: 65m
- 66kV Cable with conductor Cross Section of 1200mm²
- Cable Configuration: Untethered Lazy wave
- Cable assessed in Start of Life (SOL) & End of Life (EOL) conditions

Case Study - Load Case Matrix (Strength Analysis)

- Strength DNV LC 6.1 Parked Turbine
- Omni-directional environmental loads assessed: 0deg to 360deg

DNV Load Case	DNV Analysis Condition	Limit State	Wind	Wa	ves	Current ⁽²⁾	Environmental Direction
6.1	Parked Turbine	ULS	50 Year [m/s]	Hs [50-yr]	Tp [50-yr]	50 Year [m/s]	(deg)
6.1	Parked Turbine	ULS	43.1	10.5	14.8	1.34	0 to 360

1/ Wind speed is defined as 1-hour average at 155m elevation


2/ Current speed at Near-surface

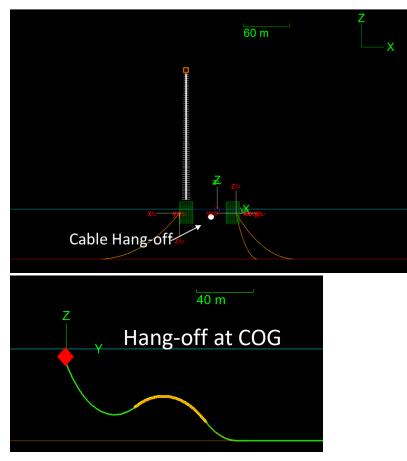
Case Study - Cable Design Criteria (Strength Analysis)

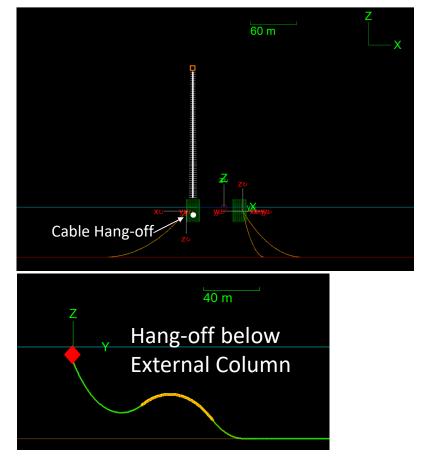
- Minimum bend radius (MBR) > 3.0m
- Maximum tension < 600kN
- SAG bend to remain off seabed with 3.0m clearance
- HOG bend to maintain sufficient clearance for vessel access
 - at this stage 10.0m clearance is assumed relative to the still water level regardless of the waves
- Maximum compression of 10% of the cable working limit is assumed
- No lateral buckling in TDZ

Case Study - Feasible Mooring Designs Offset Envelope measured from <u>Floater CoG</u>

- Cable Azimuths Assessed:
 - Odeg
 - 30deg
 - 90deg
 - 120deg
- Maximum Floater Offset (180deg):

	Max. Floater Offset			
Mooring Type	(m)	(%)		
Catenary	21.3	32.8%		
Taut	13.3	20.5%		


>> Feasible mooring systems design envelope developed based on mooring performance, anchor options and other parameters


Cable Hang-off Position

• Floater Centre (10m below MSL)

• External Column (10m below MSL)

>> Cable nominal configuration (without environmental loads) is the same regardless of the hang-off position

Cable Strength Results Cable Hang-off at Floater Centre

		Summary of Dynamic Results, Catenary Mooring System – DNV LC 6.1 (SOL & EOL)					
	Cable Azimuth	(All Environmental Directions Assessed, 65m Water Depth)					
Cable Cross Section	(deg)	Maximum Tension (kN)	Minimum Tension (kN)	MBR (m)	SAG Clear. (m)	HOG Clear. (m)	
		>600kN	>-60kN	>3.0m	>3.0m	>10.0m	
Hang-off at Floater Centre (COG)							
	0	633.3 (1.06)	-4.6 (0.08)	2.5 (1.20)	8.9	14.0	
1200mm ²	30	360.7 (0.60)	-11.0 (0.18)	2.5 (1.20)	3.1	14.6	
	90	383.4 (0.64)	-4.4 (0.07)	2.6 (1.15)	8.9	14.8	
	120	517.7 (0.86)	-4.1 (0.07)	2.8 (1.07)	8.9	15.4	

>> Feasible cable design configuration based on design criteria

Legend:

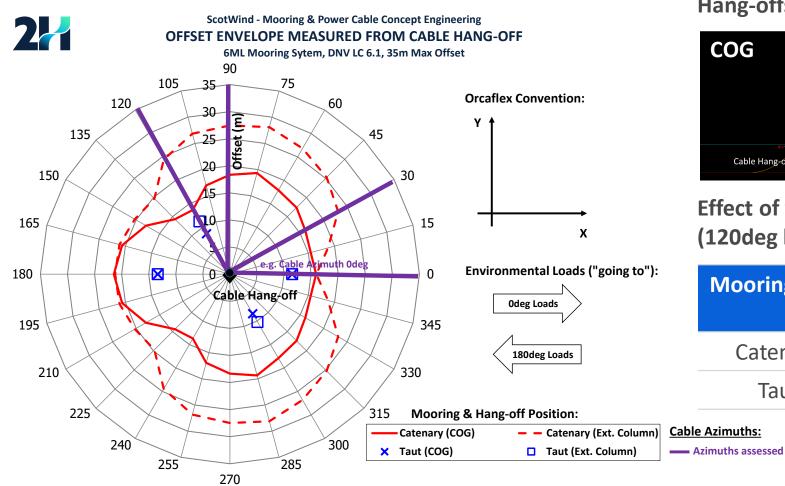
Within design criteria (Pass)

Slightly outside design criteria

Not within design criteria (Fai

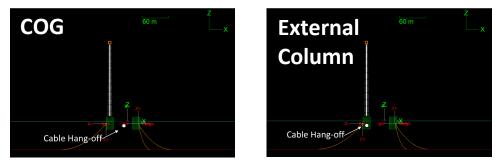
Cable Hang-off at Floater Centre vs External Column

		Summary of Dynamic Results, Catenary Mooring System – DNV LC 6.1 (SOL & EOL)					
	Cable Azimuth (deg)	(All Environmental Directions Assessed, 65m Water Depth)					
Cable Cross Section		Maximum Tension (kN)	Minimum Tension (kN)	MBR (m)	SAG Clear. (m)	HOG Clear. (m)	
		>600kN	>-60kN	>3.0m	>3.0m	>10.0m	
Hang-off at Floater Centre (COG)							
	0	633.3 (1.06)	-4.6 (0.08)	2.5 (1.20)	8.9	14.0	
1200mm ²	30	360.7 (0.60)	-11.0 (0.18)	2.5 (1.20)	3.1	14.6	
1200mm-	90	383.4 (0.64)	-4.4 (0.07)	2.6 (1.15)	8.9	14.8	
	120	517.7 (0.86)	-4.1 (0.07)	2.8 (1.07)	8.9	15.4	
Hang-off below External Column							
	0	446.2 (0.74)	-5.5 (0.09)	2.5 (1.20)	3.8	17.0	
1200,	30	284.1 (0.47)	-28.6 (0.48)	2.9 (1.03)	4.7	15.5	
1200mm ²	90	3433.4 (5.72)	-388.4 (6.47)	2.7 (1.11)	2.4	15.0	
	120	3921.7 (6.54)	-444.5 (7.41)	2.4 (1.25)	2.7	16.8	


>> Maximum and minimum tension at cable for azimuths 90deg and 120deg are not within design criteria
>> Why does the hang-off position of the cable have such a great impact on the results?

Legend:

Within design criteria (Pass) Slightly outside design criteria


lot within design criteria (Fai

Cable Strength Results Offset Envelope Comparison

Hang-offs

Effect of yaw on excursion at cable hang-off (120deg heading):

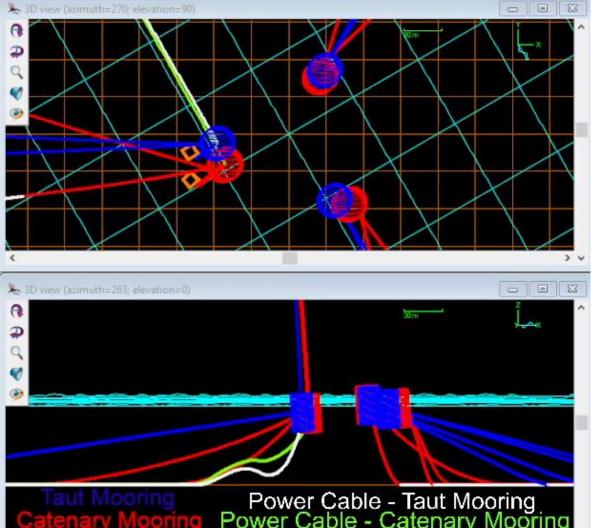
Mooring Type	Floater Centre (COG)	External Column	
Catenary	+0m	+10.7m	
Taut	+0m	+2.6m	

>> Motions at cable hang-off are sensitive to location, heading and mooring type **due to floater yaw**

Cable Strength Results Offset Envelope Comparison

30 view (azimuth=260; elevation=4)

9


>> Mooring significantly affects the power cable design requiring an integrated design approach

Same Nominal

Configuration

Conclusions

Conclusions

- Power cables are leading cause of failures in Offshore Wind
- Engineering needed to reduce failure rates and maximize operability for dynamic cables
- The configuration of the dynamic power cable is unique to:
 - Floater type,
 - Floater Hang-off location
 - Mooring system design
 - Water depth
 - Metocean conditions
- For the case study:

- TDR
- Floater maximum offset and motions with feasible taut mooring system reduces in comparison with feasible catenary mooring
- Cable hang-off position and mooring design have an impact on cable excursion
- Large excursion leads to infeasible cable design
- Mooring design and cable design must be integrated together to achieve feasible system design

THANK YOU

2H thanks Oto Matos (SSE/Ossian) & Michael Thompson (Marubeni/Ossian) for their support

Questions?

Liam.Moore@2hoffshore.com Alex.Rimmer@2hoffshore.com

THANK YOU

2hoffshore.com