

Al in the Underwater Domain and Exploiting Development Elsewhere

Eshan Rajabally CEng PhD

Subsea Expo, February 2024

Presentation Outline

- Introducing BMT
- Applications of AI in the Maritime Domain
- Trustworthy and Responsible AI
- Standards and Beyond

Introducing BMT

BMT at a Glance

BMT Maritime Autonomous Systems (MAS) activity

Dedicated team stood up to provide:

- Independent MAS assurance
 - Simulator based collision regulation compliance testing
- Technical & Engineering Consultancy
 - Underwater vehicle cybersecurity
- Leading Edge R&D
 - Next generation "Pentamaran" hull-form

Applications of AI in the Maritime Domain

Applications of AI in Underwater

Sensor processing Multi-source data for Object detection an Collision avoidance Acoustic communi	usion and perception nd classification e, cations	Mission planning Spatio-temporal scheduling	Multi vehicle coordination Formation control, Task allocation		
Localization and mapping GPS denied PNT	Guidance & Navigation Path planning, Docking & homing	M cc Tr St	odel based ontrol ajectory tracking, ation keeping	Data analysis Environmental data assessment, UW infrastructure monitoring	

Potential Applications of AI yet to be read across?

Trustworthy and Responsible Al

Trustworthy & Responsible Building Blocks

RTAI Principles	UK 2023		OECD 2019				India 2021			Russia 2021
Appropriate transparency & explainability										
Safey, security and rebustness										
Non-malficence										•
Fairness and justice										•
Privacy and data protection										
Accountability	•	•	•	•	•	•	•	•	•	

OECD.AI Tools & Metrics for Trustworthy AI

Openly available online catalogue of tools (~700) maintained by the Organisation for Economic Cooperation and Development (OECD)

Some Tool Types

- Audit processes
- Checklists
- Documentation processes
- Guidelines
- Product development
- Risk management
- Technical validation
- Software toolkits

LIFECYCLE STAGE(S) 🕕	PURPOSE(S) 🕕
Operate & monitor	Content generation
Deploy	Event/anomaly detection
Verify & validate	Forecasting/prediction
Build & interpret model	Goal-driven optimisation
Collect & process data	Interaction support/chatbots
Plan & design	Personalisation/recommenders
C C	Reasoning with knowledge
	structures/planning
	Recognition/object detection

Newman's AI Trustworthiness Properties, 1 of 2

Trustworthy Characteristic	Property	Question(s) to Consider		
		How will we assess whether the AI system is fit for purpose for each intended use and provides a vali		
	Fit for Purpose	solution for the problems we are trying to solve?		
	Predictable and Dependable	How will we ensure that the AI system will behave as expected?		
	Appropriate Automation	How will we determine the desired and appropriate degree of automation?		
		How will we assess the quality of the AI system design and configuration and ensure consistently high		
	High Quality Configuration	quality?		
		How will we assess and improve the completeness, quantity, suitability, and representativeness of the		
	Data Completeness	data?		
Data Quality Accurate		How will we assess and improve the quality and relevance of the data?		
		How will we assess the descriptive and predictive accuracy of what the model has learned?		
Valid and Reliable		How will we test whether desirable outputs of the AI system can be reproduced in different		
	Reproducible	circumstances?		
Verifiable		How will we verify that the system is behaving as expected?		
		How will we ensure the AI system performs predictably and asintended, including in new environments		
	Reliable	or with new inputs?		
	Replayable	How can we replay the behavior of the system to see if the same input generates the same output?		
	Valid	How will we validate the outputs of the AI system, including through external validation?		
		How will we review whether the capabilities of the AI system are appropriate for a particular use and		
	Appropriate Capabilities	context?		
		How will we review that the design and training of the system is appropriate for intended and likely		
	Appropriate System	uses, and is not underspecified?		

Newman's AI Trustworthiness Characteristics, 2 of 2

Trustworthy Characteristic	Property	Question(s) to Consider
	Data Stability	How will we analyze and monitor for data drift over time?
		How will we ensure that reliable technical and procedural controls, including deactivation and fail-safe
Safe	Safely Interruptible	shutdown, are in place?
	Containment	How can we contain the AI system to prevent safety and security breaches?
	Detection of Anomalies	How will we detect potential novel hazards?
		How will we assess and mitigate ways in which systemic and human bias may influence the design,
Fair (Harmful Bias Managed)	Mitigation of Bias	development, and deployment of the AI system?
	Security-by-Design	How will we build security into the AI system design, testing, deployment, and operation?
		How will we maintain and ensure the accuracy, completeness, and appropriateness of data, models, and
	Integrity	procedures informing the AI system?
Secure and Resilient	Data Security	How will the security of data that is used for training or created be ensured?
		How will we protect the AI system against cyber attacks, adversarial attacks, data poisoning, model
	Robust	leakage, evasion, inversion, etc., and ensure ongoing performance?
	Resilient	How will we assess the AI system's ability to handle uncertainty and unknown environments?
		How will we make model uncertainty more interpretable by adding features such as confidence interval
Explainable	Interpretable Uncertainty	outputs?
		How will we use encryption, differential privacy, federated learning, data minimization, and/or other
Privacy-Enhanced	Data Protection	best practices to protect data?
		How will we document the AI system's design, datasets, training, characteristics, capabilities,
Accountable & Transparent	Documentation	limitations, predictable failures, intended uses, etc.?
		How can we enable access to the AI system and datasets to relevant authorities, independent
	Data & System Accessibility	researchers, and trusted intermediaries?
Responsible Practice & Use	Verified Supply Chain	How will we assess and verify the relevant components of the supply chain?

Standards and Beyond

Industry Standards for AI – Google & Microsoft

Google AI Principles

We will assess AI in view of the following objectives. We believe AI should:

- 1. **Be socially beneficial:** With the likely benefit to people and society substantially exceeding the foreseeable risks and downsides.
- Avoid creating or reinforcing unfair bias: Avoiding unjust impacts on people, particularly those related to sensitive characteristics such as race, ethnicity, gender, nationality, income, sexual orientation, ability and political or religious belief.
- Be built and tested for safety: Designed to be appropriately cautious and in accordance with best practices in AI safety research, including testing in constrained environments and monitoring as appropriate.
- 4. **Be accountable to people:** Providing appropriate opportunities for feedback, relevant explanations and appeal, and subject to appropriate human direction and control.
- 5. **Incorporate privacy design principles:** Encouraging architectures with privacy safeguards, and providing appropriate transparency and control over the use of data.
- 6. Uphold high standards of scientific excellence: Technology innovation is rooted in the scientific method and a commitment to open inquiry, intellectual rigor, integrity and collaboration.
- 7. Be made available for uses that accord with these principles: We will work to limit potentially harmful or abusive applications.

Left image sourced from Google, https://ai.google/static/documents/ai-principles-2022-progress-update.pdf Right image sourced from Microsoft, https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-Responsible-AI-Standard-v2-General-Requirements-3.pdf

ISO AI Trustworthiness Guidance

Vulnerabilities, Threats & Challenges

- Security
- Privacy
- Bias
- Unpredictability
- Opaqueness
- Specification related
- Implementation related
- Use related

Mitigation Measures

- Transparency
- Explainability
- Controllability
- Bias reduction
- Privacy
- Reliability, resilience and robustness
- Mitigating system hardware faults
- Functional safety
- Testing and evaluation
- Use and applicability

Sourced from ISO/IEC TR 24028:2020 Information technology — Artificial intelligence — Overview of trustworthiness in artificial intelligence Many other potentially relevant standards summarised in the UKRI's "Report on the Core Principles and Opportunities for Responsible and Trustworthy AI" ~300 catalogued at https://aistandardshub.org/ai-standards-search/

Mitigation Signposting

Transparency & Explainability

- Al is interpretable if we can understand how it works (transparent) and/or why it makes the decisions that it does (explainable)
- The Assuring Autonomy International Programme Body of Knowledge provides references to 17 technique types for providing interpretability specific to machine learning

Controllability

- Microsoft's Guidelines for Human-Al Interaction, 2019
- Google PAIR, People + AI Guidebook, 2021

Left image sourced from MITs AI Blindspots (Calderon et al., 2021) at https://aiblindspot.media.mit.edu/ Right image sourced from US NISTs"Tow ards a Standard for Identifying and Managing Bias in Artificial Intelligence" (Schwartz et al., 2022)

To Conclude

Artificial Intelligence is demonstrating benefit in the underwater sector but has potential to go further

Generic or transferable features of AI trustworthiness along with principles and practice are proliferating

Adoption of these can benefit the application of AI in the underwater domain from development through to usage

Thank you

eshan.rajabally@uk.bmt.org

