

Is a Combined Hydrogen Production and Storage Solution Key to the Energy Transition?

Subsea Expo

Diana Jelenova

22<sup>nd</sup> February, 2024



### Agenda



• Introduction to Offshore Hydrogen

• Hyfloat Project

• Challenges



### **Over 35,000 professionals, across 60 countries**

#### Advise

- Feasibility studies
- Concept design
- Pre-FEED
- Strategy planning

#### Design

- FEED
- Detailed design
- Owner's engineer

#### Deliver

- PMC
- EPCm
- Commissioning

#### Operate

- Maintenance
- Modifications
- Brownfield engineering
- Asset management
- Asset optimisation

#### Repurpose

- Life extension
- Asset repositioning
- Decommissioning



# Unlocking Solution to the world's most critical challenges



### What we do across the project lifecycle

#### Feasibility

- Opportunity and market assessment
- Concept development & appraisal
- Technology selection
- Techno-economic modelling
- Site screening and selection
- Decarbonisation studies
- Stakeholder engagement
- Risk management

#### Develop

- Full pre-FEED and FEED services
- Technical Safety
- Procurement support, including technology benchmarking
- ITT preparation, procurement process management and evaluation support.
- Contract evaluation and negotiation support
- Owner's engineer services

#### Execute

- Detailed design support
- Supplier documentation review
- Pre-Commissioning Operational hazards assessment
- FAT witness
- Construction management, including liaison with contractors
- Full EPCm capability

#### **Operate & Maintain**

- Full site/plant operating partner delivering fit for purpose solutions
- Operational Readiness assessments
- Design, Build, Commission, Startup, Operate capability
- Operator training, HAZOP
- Smart scalable digital and AI led maintenance solutions



### **Hydrogen Case Studies**

Some recent relevant examples of Wood's undertaking hydrogen projects are detailed below:



#### Pre-Feasibility to FEED - onshore

- Ongoing 1.2GW green hydrogen and ammonia project (SA, confidential client)
- **Ongoing** 3.0GW green hydrogen project (UK, confidential client)
- 2023 1.0GW green hydrogen and ammonia project (Norway, confidential client)
- 2023 1.0GW green hydrogen project (Lithuania, confidential client)



#### Concept Design - Offshore

- **Ongoing** 1.0GW green hydrogen decentralized (North Sea, EETF)
- 2023 1.0GW green hydrogen both (UK, confidential client)
- 2023–10MW green hydrogen onshore from offshore wind (UK, confidential client)
- 2021 1.5-1.8GW green hydrogen centralized (Baltic Sea, confidential client



#### Owners Engineering - Onshore

- Ongoing 1.8GW green hydrogen and e-methanol project (US, confidential client)
- **Ongoing** 2.2GW green hydrogen and ammonia project (US, confidential client)
- Ongoing 500MW green hydrogen project (Spain, confidential client)
- Ongoing 3GW green hydrogen project (Australia, confidential client)

# Offshore Hydrogen



### Why Produce Hydrogen Offshore?

- Better wind resource
- Alleviating grid constraints
- Direct access to existing shipping lanes and/ or pipelines

• Public acceptance



### **Offshore Hydrogen Production**

• **Centralised offshore production:** one or more offshore platforms exist as part of the wind farm where electrolysis equipment is housed to produce hydrogen. E.g. PosHYdon, H2Mare,...

• **Decentralised offshore production:** separate electrolysers within each offshore turbine, connected to central storage, or storage housed within each independent turbine. E.g. Dolphyn, Oyster,...





- Project funded by the EETF Scottish Government
  - Scope:
    - Validation of the foundation design
      - Computational modelling
      - Experimental validation
    - Technoeconomic studies
      - Literature review
      - Concept design
      - Supply chains
      - Hydrogen production
      - LCOH
      - Risk and environmental assessment



wood







Assuming 1.005GW wind farm (67 turbines), 2030 FID, producing 2034-35





## **Hyfloat Concept**

- 15 MW floating spar buoy turbine with integrated hydrogen storage
- 10 MW electrolyser housed within the tower
- Onboard desalination













Impact of integrated storage on hydrogen supply





### **Challenges & Next Steps**

- Lack of technology suitable for hydrogen and/ or offshore operation
- Motion compensation
- Offshore environment

• Lack of regulations





